'New tailor-made biopolymers produced from lignocellulosic sugars waste for highly demanding fire-resistant applications'

C1696 Standard Guide for Industrial Thermal Insulation Systems has been revised to C1696-16

Significance and Use


4.1 When choosing a thermal insulation product or combination of products, physical, chemical and mechanical properties and the significance of those properties should be considered. ASTM test methods are usually performed under laboratory conditions and may not accurately represent field conditions depending on process temperature, environment, and operating conditions. Performance results obtained using ASTM test methods can be used to determine compliance of materials to specifications but do not necessarily predict installed performance. Values stated in the ASTM material standards are those that apply to the majority of materials and not to any specific product; other tested values may exist for specific material applications.

4.2 Design of thermal insulation systems requires the understanding of process requirements, temperature control, heat loss criteria, control of thermal shock, and mechanical forces on insulation generated by thermal gradients and wind environmental conditions. Sometimes, the mechanical design of piping and equipment needs to be modified to support insulation adequately and provide for insulation weatherproofing. Process requirements may dictate the control of critical temperature to prevent freezing, maintain viscosity, or minimize internal corrosion. When handling heat transfer fluids such as ethylene oxide or hot oils, the selection of insulation materials and the insulation system design becomes critical. whereby If these fluids are absorb in insulation materials, the fluid flash point could be below the fluid operating temperature. Specified heat gain or heat loss and acceptable surface temperatures could also dictate thermal design of insulation systems. Environmental corrosivity, high wind, and extreme ambient temperatures affect the selection of weatherproofing and methods of its securement. A combination of these factors plays a significant role in the selection of insulation materials and application methods to provide long-lasting trouble-free service.

4.3 Application methods are generally defined by the purchaser's specifications. However, some specialty insulation systems, such as prefabricated insulation panels for ductwork, precipitators, and tanks, will also have supplemental installation requirements specified by the insulation system manufacturer. defined by the specification of the manufacturer.

4.4 In any application of thermal insulation, the insulation requires protection of some type, be it protection from the elements such as rain, snow, sleet, wind, ultraviolet solar radiation, protection from external forces that can cause mechanical damage, vapor passage, fire, chemical attack, or any combination of these. This protection can be provided in by metal, plastic, coated or laminated composites or both, mastic coatings, or a combination of the above depending upon the application, service, and economic requirements. Considering the enormous overall cost of a new facility, and comparing the initial cost of the insulated portion as a small percentage of that overall cost with the substantially increased operating cost as a result of inefficient insulation protection, it is common sense to provide only the best insulation system available and the best protection for that long-term investment consistent with the appropriate design and economic requirements. Usually a new facility is very expensive and the initial cost of the insulation portion is a small percentage of that overall cost. However, increased operating costs can result from inefficient protection.

4.5 Bid invitations should contain information necessary to determine how guarantees of materials and application will be resolved.

4.6 It is recommended that the purchaser provide a quality assurance program that defines the inspection of all materials, material safety data sheets (MSDS), and specific application procedures before and during progress of the insulation work.

4.7 During contract negotiations, the contractor and purchaser should discuss and agree to the procedures to be adopted for suitable periodic inspection and maintenance of the insulation systems to ensure that the initial performance of the material will be maintained. And, where applicable, they should agree to the methods of repair and replacement to be adopted in case damage occurs during service or overhaul.


1. Scope


1.1 This guide covers information on selection of insulation materials, systems design, application methods, protective coverings, guarantees, inspection, testing, and maintenance of thermal insulation primarily for industrial applications in a temperature range of –320 to 1200°F (–195.5 to 648.8°C).

1.2 This guide is intended to provide practical guidelines, by applying acceptable current practice while indicating the basic principles by which new materials can be assessed and adapted for use under widely differing conditions. Design engineers, the general contractors, the fabricators, and the insulation contractors will find this guide helpful.

1.3 Although some insulation system designs can serve as fire protection, this guide does not address the criteria specific to that need. API 521 Guide for Pressure-Relieving and Depressuring Systems is recommended as a reference for fire protection. This guide will however address the fire properties of insulation materials.

1.4 This guide is not intended for commercial, architectural, acoustical, marine, vehicle transport, or military use.

1.5 This guide does not address insulation system design for refractory linings or cold boxes whereby these are typically package units and of a proprietary insulation design.

1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C167 Test Methods for Thickness and Density of Blanket or Batt Thermal Insulations

C195 Specification for Mineral Fiber Thermal Insulating Cement

C203 Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation

C209 Test Methods for Cellulosic Fiber Insulating Board

C240 Test Methods of Testing Cellular Glass Insulation Block

C272 Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

C302 Test Method for Density and Dimensions of Preformed Pipe-Covering-Type Thermal Insulation

C303 Test Method for Dimensions and Density of Preformed Block and Board-Type Thermal Insulation

C335 Test Method for Steady-State Heat Transfer Properties of Pipe Insulation

C351 Test Method for Mean Specific Heat of Thermal Insulation

C354 Test Method for Compressive Strength of Thermal Insulating or Finishing Cement

C356 Test Method for Linear Shrinkage of Preformed High-Temperature Thermal Insulation Subjected to Soaking Heat

C411 Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation

C446 Test Method for Breaking Load and Calculated Modulus of Rupture of Preformed Insulation for Pipes

C447 Practice for Estimating the Maximum Use Temperature of Thermal Insulations

C449 Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement

C450 Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging

C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus

C533 Specification for Calcium Silicate Block and Pipe Thermal Insulation

C534 Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C547 Specification for Mineral Fiber Pipe Insulation

C552 Specification for Cellular Glass Thermal Insulation

C553 Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications

C578 Specification for Rigid, Cellular Polystyrene Thermal Insulation

C591 Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation

C592 Specification for Mineral Fiber Blanket Insulation and Blanket-Type Pipe Insulation (Metal-Mesh Covered) (Industrial Type)

C610 Specification for Molded Expanded Perlite Block and Pipe Thermal Insulation

C612 Specification for Mineral Fiber Block and Board Thermal Insulation

C665 Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

C680 Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs

C692 Test Method for Evaluating the Influence of Thermal Insulations on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel

C764 Specification for Mineral Fiber Loose-Fill Thermal Insulation

C795 Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel

C800 Specification for Fibrous Glass Blanket Insulation (Aircraft Type)

C871 Test Methods for Chemical Analysis of Thermal Insulation Materials for Leachable Chloride, Fluoride, Silicate, and Sodium Ions

C1029 Specification for Spray-Applied Rigid Cellular Polyurethane Thermal Insulation

C1057 Practice for Determination of Skin Contact Temperature from Heated Surfaces Using a Mathematical Model and Thermesthesiometer

C1104/C1104M Test Method for Determining the Water Vapor Sorption of Unfaced Mineral Fiber Insulation

C1126 Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation

C1289 Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board

C1393 Specification for Perpendicularly Oriented Mineral Fiber Roll and Sheet Thermal Insulation for Pipes and Tanks

C1511 Test Method for Determining the Water Retention (Repellency) Characteristics of Fibrous Glass Insulation (Aircraft Type)

C1559 Test Method for Determining Wicking of Fibrous Glass Blanket Insulation (Aircraft Type)

C1617 Practice for Quantitative Accelerated Laboratory Evaluation of Extraction Solutions Containing Ions Leached from Thermal Insulation on Aqueous Corrosion of Metals

C1729 Specification for Aluminum Jacketing for Insulation

D1621 Test Method for Compressive Properties of Rigid Cellular Plastics

D1622 Test Method for Apparent Density of Rigid Cellular Plastics

D2126 Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging

D2842 Test Method for Water Absorption of Rigid Cellular Plastics

D3574 Test Methods for Flexible Cellular Materials--Slab, Bonded, and Molded Urethane Foams

E84 Test Method for Surface Burning Characteristics of Building Materials

E96/E96M Test Methods for Water Vapor Transmission of Materials

E136 Test Method for Behavior of Materials in a Vertical Tube Furnace at 750C

E176 Terminology of Fire Standards

E659 Test Method for Autoignition Temperature of Liquid Chemicals

E2652 Test Method for Behavior of Materials in replicas de relojes a Tube Furnace with a Cone-shaped Airflow Stabilizer, at 750C

» Code: ASTM C1696 - 16

» Committee: Subcommittee: C16.40

» More Information

« Go to Technological Watch

This project has received funding from the European Unionís Seventh Framework Programme for research, technological development and demonstration